Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces.

نویسندگان

  • Julie A Wu
  • Caroline Kusuma
  • James J Mond
  • John F Kokai-Kun
چکیده

Staphylococci often form biofilms, sessile communities of microcolonies encased in an extracellular matrix that adhere to biomedical implants or damaged tissue. Infections associated with biofilms are difficult to treat, and it is estimated that sessile bacteria in biofilms are 1,000 to 1,500 times more resistant to antibiotics than their planktonic counterparts. This antibiotic resistance of biofilms often leads to the failure of conventional antibiotic therapy and necessitates the removal of infected devices. Lysostaphin is a glycylglycine endopeptidase which specifically cleaves the pentaglycine cross bridges found in the staphylococcal peptidoglycan. Lysostaphin kills Staphylococcus aureus within minutes (MIC at which 90% of the strains are inhibited [MIC(90)], 0.001 to 0.064 microg/ml) and is also effective against Staphylococcus epidermidis at higher concentrations (MIC(90), 12.5 to 64 microg/ml). The activity of lysostaphin against staphylococci present in biofilms compared to those of other antibiotics was, however, never explored. Surprisingly, lysostaphin not only killed S. aureus in biofilms but also disrupted the extracellular matrix of S. aureus biofilms in vitro on plastic and glass surfaces at concentrations as low as 1 microg/ml. Scanning electron microscopy confirmed that lysostaphin eradicated both the sessile cells and the extracellular matrix of the biofilm. This disruption of S. aureus biofilms was specific for lysostaphin-sensitive S. aureus, as biofilms of lysostaphin-resistant S. aureus were not affected. High concentrations of oxacillin (400 microg/ml), vancomycin (800 microg/ml), and clindamycin (800 microg/ml) had no effect on the established S. aureus biofilms in this system, even after 24 h. Higher concentrations of lysostaphin also disrupted S. epidermidis biofilms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Biosurfactant of Saccharomyces Cerevisiae on Biofilms Produced by Staphylococcus Aureus, Epidermidis and Saprophyticus: A Laboratory Study

Background and Objectives: Biosurfactants are amphiphilic molecules produced by microorganisms that due to  surfactant activity, have several applications in different industries such as cleaning, emulsification, foaming and dispersion. The aim of this study was to investigate the effect of biosurfactant extracted from saccharomycess cerevisiae on biofilm formation of staphylococcus aureus (PTC...

متن کامل

Lysostaphin as a potential therapeutic agent for staphylococcal biofilm eradication.

The aim was to study the activity of lysostaphin in monotherapy or in combination with oxacillin, towards biofilms built by clinical and reference S. aureus and S. epidermidis strains in the wells of microplate, in the chambers of a LabTekII chamber slide or on the polyethylene catheter. MICs of oxacillin and lysostaphin for planktonic bacteria were determined according to the standards of NCCL...

متن کامل

Nuclease production and lysostaphin susceptibility of Staphylococcus aureus and other catalase-positive cocci.

Some strains of Staphylococcus epidermidis and Micrococcus sp. produce nucleases. However, thermal stability was shown to be unique to the nucleases of S. aureus. In addition, two micromethods for susceptibility testing to lysostaphin were more precise and convenient than anaerobic glucose fermentation in distinguishing between the genera Staphylococcus and Micrococcus.

متن کامل

Bioactivity Determination of Recombinant lysostaphin Immobilized on Glass Surfaces Modified by Cold Atmospheric Plasma on Staphylococcus aureus

Introduction: Staphylococcus aureus is a source of nosocomial infections and one of the significant concerns in patients with indwelling devices. Lysostaphin is a bacterially produced endopeptidase with a unique activity on S. aureus. Plasma, the fourth state of the material, consists of charged ions, free electrons, and activated neutral species. Biomedical applications of cold plasma are rapi...

متن کامل

Investigation of the effect of biosurfactant of Bacillus subtilis against Staphylococcus strains biofilms

Background: Biosurfactants are compounds that are produced by different microorganisms and have an emulsifying property. This study aimed to investigate extractive biosurfactant from bacillus subtilis (PTCC1720) against the biofilms of Staphylococcus aureus (PTCC 1112), Staphylococcus saprophyticus (PTCC 1440) and Staphylococcus epidermidis (PTCC 1435). Materials and Methods: This study was con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 47 11  شماره 

صفحات  -

تاریخ انتشار 2003